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It is widely felt among empirically oriented economists that too much
of the information on income distribution that is actually collected by
statistical offices is lost in what is eventually published. Typically,
only a few points of the Lorenz curve are made available whereas in
applied work often the entire curve is required. This need to know the
entire Lorenz curve arises already when the intention is merely to extract
e.g. the Gini concentration ratio with a reasonable degree of accuracy,
and it becomes more urgent when the informational content of such uni-
dimensional inequality measures is to be supplemented by additional
information from the Lorenz curve. For instance, calculation of the
minor concentration ratio proposed by Hagerbaumer (1977), which is meant
to measure the relative position of the poor, requires sufficiently re-
liable information on the shape of the Lorenz curve over at least the
lower income deciles, whereas the derivation of Lorenz coefficients as
suggested by Koo, Quan, and Rasche (1981), which may convey useful in-
formation on the contribution of certain income classes to overall in-
equality1 presupposes in essence knowledge of the Lorenz curve over all
its range. Finally, knowledge of the entire Lorenz curve is obviously
indispensable when the extent of overlapping of income distributions of
pairs of countries has to be determined as would be necessary, for
example, in tests of Linder's hypothesis on intra-industry trade2

There are many other applications in applied work where one would
prefer having the entire Lorenz curve rather than only a few points on
it. The question therefore arises how one may retrieve the unknown
Lorenz curve from the sparse data points which are typically available.
It is the purpose of this paper to discuss three different approaches
to this task and to report briefly the problems encountered in each case.

1 See also Thon (1983) and Koo, Quan, and Rasche (1983).

2 One may in fact wonder whether the poor empirical support obtained so
far really speak against the validity of Linder's convincing hypothesis
or rather reflect the crude approximations to the extent of income
similarity between countries that had to be used due to lack of better
information on income distribution. See e.g. Fortune (1979).
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The approaches considered are (i) fitting some specified functional form
to the known data points of the Lorenz curve and taking this estimate as
a substitute for the unknown Lorenz curve, (ii) interpolating the known
data points by a well-behaved (monotone, convex and differentiable)
spline function, and finally (iii) constructing the upper and lower
bounds of the band through which the true Lorenz curve must pass. The
calculation of such bounds may be of interest on its own, but it will
serve here essentially as a yardstick with which to judge the reliability
of the other two approaches mentioned.'

1. Retrieving the Lorenz Curve by Fitting Specified Functional Forms

Let p and y denote the cumulative proportions of income units and of
income received. The best known functional form to represent a Lorenz
curve is then presumably that of Kakwani and Podder (1976),

n = Yﬂu(/Z—W)B with 0<a,B=1 and vz0 y (1)

which expresses the Lorenz curve in terms of the new coordinates n=
(p-y)/v2 and wm=(p+y)/v/2. This specification was extensively and obviously
also succeésfully used by Jain (1975) in her compilation of size distri-
butions of income. From a computational point of view this representation
3 with the

disadvantage of being awkward when it comes to integrating the associated

combines the advantage of being particularly easy to estimate

Lorenz curve over some subinterval. But what is more important, the
Kakwani and Podder specification (1) has been seriously criticized by
Rasche, Gaffney, Koo, and Obst (1980) on theoretical grounds for failing
to comply with one of the basic properties of a Lorenz curve, i.e. to
stay within the lower triangle of the unit squareA.

3 Note that after taking logarithms, (1) is linear in its parameters.

4 Indeed, it is not difficult to check that the Kakwani and Podder re-
presentation of the Lorenz curve will leave the unit square at either or
both of its endpoints (0,0) and (1,1) in all but two permissible. para-
meter constellations which are y=0 and a=B=1, y=1//2. In all other ca-
ses, the derivative dn/dm approaches plus or minus infinity at the two
endpoints m=0 and m=/2, respectively, which is tantamount to a slope of
-1 of the associated Lorenz curve at its two endpoints (0,0) and (1,1).
Kakwani argued (1980) that this rather general defect will be of little
practical importance since the Lorenz curve implied by (1) will normally
possess over almost its entire range the required monotonicity. This is
hardly much consolation because the essential question is how long it
will take the estimated Lorenz curve to reenter the lower triangle of
the unit square, and on this account, the order of magnitude involved is
too often not negligible. This may not be obvious, but e.g. Jain's com-
pilation is full of such cases. For instance, the estimates for Botswana
1971-72 imply y<O for all pe(0,.75) and those for Brazil 1960 (first
column) imply p>1 for all y in the interval (.75,1).
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To avoid this flaw, Rasche et al. proposed using the generalized

Pareto Lorenz curve instead,
y = (1—(1-p)°‘)1/B with  0<a,B=1 R (2)

which has all the properties (such as monotonicity and convexity) a
Lorenz curve must possess. From the point of view of computational effort
involved, it is perhaps comparable to Kakwani and Podder's specification
(1), for it requires non-linear estimation but is somewhat easier to in-
tegrate.

As an alternative to these two specifications we will also use the

functional form
_ 1/a B8 . -
y = Yp + (1-v)(1-(1-p)®)  with  0<a,Bs? and Osysl , (3)

which is another generalization of the Pareto Lorenz curve, as it is
simply pieced together as a convex combination of the Pareto Lorenz curve
proper and its mirror image across the main diagonal of the unit square.
Thus, it is clearly monotone and convex. Like the Rasche et al. specifi-
cation (2), it requires non-linear estimation techniques, but unlike it,

it is easily integrated-.

2. Retrieving the Lorenz Curve by Interpolation

A priori there is little reason to believe that an actual Lorenz curve
should obey one or another simple functional form. And since it is hardly
any merit for a functional form to have particularly few parameters, one
wonders whether or not to try retrieving the Lorenz curve by interpola-
tion rather than through curve fitting. The simplest way of interpolation
would, of course, consist of joining the known data points by linear
segments. This is in no way an unusual method of interpolation - e.g.
Paukert (1973) used it to calculate the Gini coefficients for his 56
country sample - but it implies identical incomes for all units within
each given bracket and thus leads, as is well known, to the lowest Gini
coefficient that is compatible with the data. Looking then for a smoother
representation of the Lorenz curve we will require that it be continuous-
ly differentiable in addition to being monotone and convex. One should
be aware, however, that differentiability in contrast to monotonicity
and convexity is at best justified on intuitive grounds and constitutes

no necessary attribute of a Lorenz curve.

5 In particular, integration of (3) does not require any inconvenient
recourse to the Beta distribution, as do both the specifications (1) and
(2). See Kakwani and Podder (19765 and Rasche et al. (1980).
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Of the many conceivable interpolation schemes, we will consider only
the quadratic spline function since with this representation differentia-
bility, monotonicity and convexity are particularly easy to control. Let
Pi
the associated values of the Lorenz curve, y;» are known and define the

(i=1,...,n) be the cumulative proportions of the population for which

divided differences

d. = (yi+1-yi)/(pi+1-pi) i=1,...,n-1 )
)

i.e. the slopes of the linear segments joining the known data points.
Now, the quadratic spline function is

s(p) = (pi+1—pi)'2(yi(pi+1—p)2+2ai(pi+1-p)(p—pi)+yi+1(p—pi)z) (4)

for piépépi+1 and i=1,...,n-1

w
il

Zdi—si (5.1)

ai =Yy +Si(Pi+1‘Pi)/2 . (5-2)

i

Note that the s; are the the first dervatives of the quadratic spline
function S(p) at the given points p; . From (5.1) it is evident that me-
rely 515 the slope at the point p1=0, has to be fixed in order to make
S(p) unique. Passow (1977, Theorem 2) has shown that given the conditions
dizdi_1 and choosing 84 to satisfy O§s1§2d1, the spline function S(p)
will be unique and, in particular, monotone. Clearly, these conditions
can always be met since all the points on a Lorenz curve must satisfy
digdi—Tzo by construction. Passow furthermore proved that S(p) will be
convex 1f the inequalities O§s1§d1, s122d1—d2 and di—2di_1+di_2zo for
i=3,...,n-1 hold. However, these conditions are not overly helpful in
the search for a particular 84 that makes S(p) convex. Also, they can

be shown to be unnecessarily strong. We therefore propose using the

weaker condi*t:ion’7
max(O,bZ,bA,...) s 8 s min(b1,b3,b5,...) (5.3)
: = = i - = -
with b,=d, and bi—bi_1—(-1) (di di—1) for i=2,...,n-1 s

which in view of (5.1) follows directly from the convexity condition

6 It is not difficult to check that the following representation of a
quadratic spline function together with the specifications (5.1) and
(5.2) is indeed an interpolation and continuously differentiable.

7 I owe this condition to Wilhelm Forst.
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(implying Si+1zsi) in conjunction with the monotonicity condition (re-
quiring s1zO).

The key question is whether the permissible range of 54 according to
(5.3) is empty or not, for if it is empty, there is no quadratic spline
function such as (4) that is compatible with the data and convex. Non-
existence may occur for two reasons. Either there is an error in the
data in that they violate the natural conditions dizdi_1zo, and then
there exists, of course, no convex function at all which could accomo-
date these incorrect data. Or the quadratic spline (4) with its one de-
gree of freedom is too inflexible to interpolate the given data without
violating the convexity requirement in some range. Both cases occured
when we tried to interpolate Paukert's data by the quadratic spline. If
the failure is due to inflexibility, one might think of trying higher
order splines. However, that would inevitably require a much more com-
plex effort to control for convexity and, more importantly, this approach
may not work either®. In the few cases where (4) actually failed, we re-
curred instead to M¢Allister and Rouller's "point insertion algorithm",
a much simpler and more meaningful method that solves the convexity
problem by inserting, if necessary, at most one additional (variable)
knot between eaéh pair of data points. As an additional advantage, it
pérmits (and requires) specification of the slopes 85 at the n data
pointsg. When these slopes are selected, define the variable knots

By = (5541P341783P3 Y5 ¥54q)/ (8549785) (6.1)
- - 2, -
. 1 - 2 -
with ay = y;+8;(B;-p3)/2, af = yi4q%8549(P3-pyq)/2 -

McAllister and Roulier's shape-preserving quadratic spline is then given
by

(5i‘P)2+231(5i-p)(p—pi>+§i(p—pi)2) (7.1)

8 First of all, one may encounter data which are incompatible with a
convex cubic spline even though a convex quadratic spline exists. More
importantly, one may in fact construct convex data which require the
shape-preserving spline to have an arbitrarily high degree. See
McAllister and Roulier (1981).

9 Such information is, at times, available. When it is not, as we assume
here, the slopes may be chosen more or less aribtrarily as long as they
meet the natural conditions Ossq=d4, dqsspsdp,..., dy_qss,s». However,
whenever dj=dj4+q1, the Lorenz curve is necessarily linear over the corr-
esponding interval (pj,pi+2), i.e. S(p)=yi+d;(p-pi) for pjspspisp. In
this case, the slopes at the two endpoints of the linear segment must

be identical so that s;=s;4p=d;y has to be chosen.
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for p.épéﬁi R

a8

“( (7, (py 44 -P) %282 (p, 1 -p) (p-5, ) 4y, ,, (p-5,)?) (7.2)

P) = (P q-Py) i i

for p. Spsp

It is easy to check that (7) indeed interpolates the data points, obser-
ves the specified slopes, and is convex if the data are.

3. Bracketing the Lorenz Curve by Uppef and Lower Bounds

Interpolating the known points on the Lorenz curve rather than fitting
some simple specification such as (1) through (3) has the obvious advan-
tage that at least the given points will be exactly hit. Yet even the
interpolation form, like these simpler specifications, arbitrarily for-
ces some specific curvature (and smoothness) on the Lorenz curve which
may or may not come close to the unknown truth. Rather than relying on
such a degree of arbitrariness, one may wish to extract from the known
data points only that information about the Lorenz curve that can safely
be trusted. This may appear to be a modest intention, but as will be
demonstrated below, the resulting information is rather precise and very
useful when checking the reliability of the other approaches.

Gastwirth (1972) has extensively described how to determine upper and
lower bounds for the Lorenz curve, and even though his method is not en-
tirely applicable to our problem, since we do not assume, as he does, to

know the slopes of the Lorenz curve in addition to its ordinate values

I

Consider the following figure where n=4 is assumed. Given the four

at the n given points Py, we will merely briefly outline the method.

points (yi,pi), it is obvious that the true Lorenz curve must lie some-

where inside the shaded band. This construct relies on the assumption

A
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that individual incomes are non-negative and finite, and it only uses

the property that units in each interval (pi,pi+1) earn at least the
average income of the previous interval and at most the average income

of the following interval. Normally, more than just two inner points of
the Lorenz curve will be given and then the associated band will, of
course, be substantially narrower and the sharpness of the bounds improve
accordingly.

)
4. The Performance of the Three Approaches

To reach a judgement on the reliability of the three methods outlined
in the previous sections, we used Paukert's data for a sample of 56 coun-
tries in which, because of an obvious data error, the data for South
Africa were replaced by comparable data from Jain (1975).

Consider first the curve fitting method. In view of the fact that
Paukert's data encompass just five inner points on each Lorenz curve to
which our two- or three-parameter specifications have to be fitted10,
it may come as a surprise that even in terms of goodness of fit all
three specifications perform poorly. The Rasche et al. specification (2)
with its two parameters clearly gives the worst fit. Calculated on the
basis of the entire 56-country sample, it misses the given Lorenz curve
points on an average by .0086 and thus almost by a full percentage point.
In relative terms, this amounts at times to enormous errors11. The Kak-
wani and Podder specification (1) and the alternative specification pro-
posed in (3), which both have three parameters, give a somewhat better
fit in that they miss on an average by only half as much as the Rasche
et al. specification. In relative terms this is often still too much.

One could now argue that when it comes to extract summary distribution
measures these errors tend to cancel out. While this indeed seems to be
the case for global measures that rely on the shape and position of the

. . 12 . . .
Lorenz curve over its entire range ~, this argument is certainly not

10 All three specifications meet the two endpoints (0,0) and (1,1) by
construction.

11 In the cases of Morocco and Tunisia, for example, the Rasche et al.
specification underestimates the share of the first quintile by 65 and
68 percent, respectively.

12 For instance, all estimates of the Gini concentration ratio based on
the specifications (1) and (3) remained within the theoretical bounds
suggested by Paukert's data. Only those derived on the basis of the
Rasche et al. specification (2) failed twice, namely with respect to
Morocco and Tunisia again. It should be noted that the calculation of
upper and lower bounds for e.g. the Gini coefficient compatible with the
given data is somewhat more involved than the simple construction of the
band depicted in the figure. The lower bound is clearly given by the
Gini coefficient associated with the linear connection of the given data
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valid for supplementary measures such as Lorenz coefficients that may
refer to smaller sections of the Lorenz curve. Here the estimates based
on the fitted specifications (1) through (3) fell too often outside the
range suggested by the theoretical bounds to be of any practical use.

Consider then the method of interpolating the Lorenz curve by a con-
vex quadratic spline function. Goodness of fit is no issue, as the func-
tion will meet the given data points by construction. Furthermore, with
regard to the resulting Gini concentration ratio or Lorenz coefficients
estimates, this approach performs exceflently since in all our calcula-
tions we did not find a single case where the estimate based on spline
interpolation fell outside the range suggested by the associated theore-
tical upper and lower bounds.

Consider finally the method of calculating upper and lower bounds for
either the Lorenz curve or associated distribution measures using parts
of or the entire Lorenz curve. Unfortunately, the available data often
will not, and in the case of Paukert's data, in fact do not come in a
form that permits use of Gastwirth's approach to deriving upper and
lower bounds for the Lorenz curve. When only cumulative income shares
rather than maximum and minimum incomes for each income group are known,
only the weak Lorenz curve property can be used, according to which the
incomes within each group cannot be smaller than the previous group's
average nor larger than the average of the following group. As a conse-
quence, the resulting bounds are often not very sharp as is indicated
by ranges that amounted on the average to about five per cent, however,
at times to as much as 30 per cent of the associated lower bound. Never-
theless, these bounds were in numerous cases sharp enough to discredit
the estimates on the basis of the curve fitting method as unreliable.

At any rate, if they are not very sharp, rather than pretending to be
precise, they reveal the lack of precision that goes along with the given
data.

5. Summary

We have discussed three different ways ways of retrieving the entire
Lorenz curve from a few given points, i.e. the curve fitting method,
interpolation by a convex quadratic spline, and calculation of upper and
lower bounds, which rests on the intrinsic properties of the Lorenz

points and thus easily derived. The upper bound, however, involves fin-
ding the piecewise linear and convex Lorenz curve that hits the data
points and minimizes the area below subject to the constraint that in-
comes are non-negative and finite. While the procedure is straightfor-
ward, the calculatory details are too tedious to be given here.
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curve. In applying these three methods to Paukert's data, it turned out
that curve fitting in general and the Rasche et al. specification (2) in
particular, are too unreliable to warrant practical application. Both
from the computational effort involved and particularly from its impec-
cable performance in terms of staying within the theoretical bounds, the
use of an interpolating convex quadratic spline function proved to be
clearly preferable. This approach, however, still suffers from an impor-
tant defect: the precision of the spline interpolation is more apparent
than real since it is inevitably the result of an arbitrary selection of
a specific functional form, the choice of which is guided by mathemati-
cal simplicity rather than by facts. The most dependable method thus ap-
pears to consist of calculating the upper and lower bounds for this
alone guarantees that not more information is extracted from the given
data than what they actually contain.

In practical application, however, one may often be willing to sacri-
fice at least some of the reliability for practicability and accordingly
one may prefer to work with reasonable point estimates rather than with
reliable but unwieldy bounds. The midpoint of the range spanned by the
bounds would then constitute a possible candidate for such a point esti-
mate and, indeed, a rather likely one. Suppose this midpoint is actually
chosen. It would then make little difference whether one uses these
point estimates or the computationally much simpler estimates from the
spline interpolation, because in all of the calculations we made, an al-

most perfect correlation between these two was found.
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